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The Big Question

How do Twitter users engage with COVID-19 
misinformation and factual-information?



Research Questions

RQ1: Are COVID-19 misinformation tweets more engaging than 
COVID-19 factual tweets?

RQ2: Are general topic misinformation tweets more engaging 
than general topics factual tweets?

RQ3: Which features are most correlated with engagement in 
COVID-19 vs. general topics misinformation tweets?

RQ4: Which features are most correlated with engagement in 
COVID-19 vs. general topics factual tweets?



Data Collection

2.1M tweets.

Four primary datasets:

• COVID-19 misleading claims.

• COVID-19 factual claims.

• Misleading claims on general topics.

• Factual claims on general topics.



COVID-19 Twitter Data Sources

Source Description False True

Shahi et al. Fact-checked Coronavirus-
related tweets 1345 41

Schroeder et al. Tweets linking COVID-19 with 
5G conspiracy theories ~58K N/A

CoAID
News articles & social media 
posts with fake and factual claim 
labels

484 8092

Paka et al. (CTF) Labeled and unlabeled tweets 
related to COVID-19 ~17K ~18K

Muric et al. Tweets related to anti-vaccine 
narratives for COVID-19 ~1.8M N/A



General Topics Twitter Data Sources

Source Description False True
Mitra and Gilbert 
(CREDBANK)

Crowdsourced tweets related to 
real-world news events N/A ~1.94M

Russian Troll 
Tweets Kaggle

Tweets from malicious accounts 
connected to Russia’s Internet 
Research Agency

200K N/A

Vo and Lee
Fact-checked tweets based on 
news articles from Snopes and 
Politifact

~59K ~14K

Jiang et al. Tweets labeled across a 
spectrum of fact-check ratings 1264 231



Data Cleaning and Preparation

• Discarded Tweets: Removed duplicates, 
non-English, and text-less entries.

• Collected Metadata: Gathered details on 
tweets, authors, and engagement.



Data Cleaning and Preparation

Factual Misinformation
COVID-Related General Topics COVID-Related General Topics

N 9,111 (0.43%) 1,243,913 (58.84%) 828,501 (39.19%) 32,243 (1.52%)

nstrata 4,814 4,448 4,533 4,147

μ 368.5 9,791.6 2,214.3 3,014.7

σ 7,157.9 73,305.6 10,051.9 28,727.4

Mean Rank 2407.5 2244.5 2267.0 2074.0

Descriptive statistics of our final four datasets based on the combined engagement metric.



Stratified Random Sampling

Image courtesy of elgin.edu



Stratified Random Sampling

~4,556 
tweets.

4,814 tweets

4,448 tweets

4,533 tweets

4,147 tweets

COVID 
Factual

General
Factual

COVID 
Misinformation

General
Misinformation

17,942 tweets

10 stratified 
samples





Feature Extraction

1

Sociolinguistic Analysis

• Linguistic Inquiry and Word Count (LIWC) software.

• Emotional, cognitive, and structural components.

2

Tweet Metadata

• Text-based features.

• User-based features

• Network-based features.

Sentiment Analysis

• NLTK VADER

3



Tweet Metadata

# likes # retweets

# combined 
engagement + # hashtags

# links # emojis



Tweet Metadata

User-related features

• presence of profile image.

• use of default profile image.

• use of default profile.

• whether geolocation is enabled.

• user has an extended profile.

• user has a background tile.

• # of followers.

• # of friends.

• # of lists.

• # of favorited tweets.

• # of tweets made by the user.

• verified (binary).



Sociolinguistic Analysis

Language Metrics

• Total number of words.

• Average number of words per sentence.

• Number of words containing more than six letters.

• Number of words found in the LIWC dictionary



Sociolinguistic Analysis

Linguistic Indicators

• Function words. 

• Grammar characteristics. 

• Affective words. 

• Social words. 

• Cognitive process. 

• Core needs. 

• Informal speech.



Sociolinguistic Analysis

Summary Variables

• Analytical Thinking. 

• Clout.

• Authenticity.

• Emotional Tone.



Sociolinguistic Analysis

Moral Frames

• Care.

• Fairness.

• Loyalty.

• Authority.

• Sanctity.



Sentiment Analysis



Correlation Analysis

Pearson’s correlation 
coefficient (r)

• Measure feature importance.
• r only captures linear relationships. Alternating Conditional Expectations

• Feature’s fixed point of Maximal 
Correlation.

Fisher z-transformation

• Reduce bias.
• Estimate population correlation.



Statistical Analyses -
RQ1 and RQ2

Summary results for statistical tests conducted on engagement metrics and bot/user account labels.



Findings – RQ1 and RQ2

Factual tweets were more engaging than misinformation tweets, 
regardless of their topic.



Statistical 
Analyses – RQ3

Summary of correlation analysis between the log normalized 
combined engagement metric and relevant features. 



Statistical 
Analyses –RQ4



Findings – RQ3

RQ3: Which features are most correlated with engagement
in COVID-19 vs. general topics misinformation tweets?

COVID-19:

• Grammar (e.g., use of informal speech).

Factual:

• User metadata (e.g., verified user).



Findings – RQ4

RQ4: Which features are most correlated with engagement
in COVID-19 vs. general topics factual tweets?

COVID-19:

• Grammar (e.g., use of netspeak).

• Emotion (both positive and negative).

• Writer’s confidence.

Factual:

• Grammar (e.g., use of colons or prepositions).



Discussion

• General topic misinformation  User metadata



Discussion

• Semantic content of tweet not relevant 
(except for factual COVID-19 tweets).

• Factual COVID  Tweet syntax.

• General topic     Tweet syntax.



Discussion

• Factual              Sentiment. 
COVID-19         Cognitive processing keywords.

• Misinformation   Clear, straightforward language. 
COVID-19



Discussion

• Factual tweets > Misinformation tweets 
(in terms of engagement)



Study Limitations & 
Future Work

Dataset Imbalance

• Highly imbalanced dataset.

• Findings may not apply to other 
contexts.

• Explore temporal trends in tweet data.



Study Limitations & 
Future Work

Feature Engineering

• Did not measure presence of images.

• Utilize automated feature extractors.



Study Limitations & 
Future Work

Classification Models

• Relied only on pairwise correlation.

• Study multivariate analyses.



• Dataset of 2.1M COVID-19 and non-
COVID related tweets.

• Misinformation tweets less engaging 
than factual tweets.

• Tweet features correlating with 
engagement vary based on veracity.
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Questions?
We welcome questions and further discussion.

People Still Care About Facts: Twitter Users Engage 

More with Factual Discourse than Misinformation

Luiz Giovanini: lfrancogiovanini@ufl.edu

Shlok Gilda: shlokgilda@ufl.edu

Mirela Silva: msilva1@ufl.edu

Fabrício Ceschin: fjocescin@inf.ufpr.br

Daniela Oliveria: daniela@ece.ufl.edu
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