
Detection of malware using
self-attention mechanism and strings

National Defense Academy of Japan
Satoki Kanno

Mamoru Mimura

1

Contents

1. Background 5. Experiment

2. Related Work 6. Discussion

3. Related Technique 7. Conclusion

4. Experimental Method

2

1. Background (1 / 4)
Targeted attacks
 This is one of the ways in which organizations and individuals are targeted, for

example, to steal important information
 Targeted attacks often contain malware in the form of executable files
Malware must be analyzed and detected to prevent the attacks.

3

○○.exe

Important information

Attacker

Target (Before malware infection)

Target (After malware infection)

No detection

How to do malware analysis
There are 3 main methods
1. Dynamic analysis

The method to run malware and analyze it based on its behavior

2. Static analysis
The method to analyze source code without running malware

3. Surface analysis
The method to analyze information (file name, hash, string, etc.) contained in a file
without running malware

1. Background (2 / 4) 4

1. Background (3 / 4)
○Surface analysis
 A method has been proposed to extract features from the results of surface

analysis of executable files and classify them using machine learning

5

Unique words are extracted in order of

frequency of occurrence to create a corpus

Benign executable file

Malicious executable file

Extraction of

ASCII strings

Machine learning and classification

based on a corpus

Unclear which words contribute to malware detection

Purpose of the study
1. To clarify whether consecutive strings are considered when creating the corpus.
2. To identify the features that contribute to malware detection

Contribution of the study
1. LSTM with self-attention mechanism was used to detect malware, with a

maximum F-measure of 0.904
2. We confirmed that removing non-consecutive ASCII strings from the corpus has

a certain effect.
3. We have identified the impact of self-attention mechanisms on ASCII strings and

confirmed that there are words of high importance that contribute to detection

1. Background (4 / 4) 6

2. Related Work (1 / 1) 7

No. Paper Title
ASCII

NLP Attention
All Some

1
Mastjik, F., et al.: Comparison of Pattern Matching Techniques on
Identification of Same Family Malware, International Journal of Information
Security Science, Vol. 4, No. 3, pp. 104–111 (2015).

○

2
Kolosnjaji, et al.: Empowering convolutional networks for malware
classification and analysis, 2017 International Joint Conference on Neural
Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017, pp. 3838–
3845 (2017).

○ ○

3 Yakura, H., Shinozaki, S., et al.: Neural Malware Analysis with Attention
Mechanism, Comput. Secur., Vol. 87, No. C (2019). ○ ○ ○

4
Ye, Y., Chen, et al.: an interpretable string based malware detection
system using SVM ensemble with bagging, Journal in Computer Virology,
Vol. 5, No. 4, pp. 283–293 (2009).

○

5 Mimura, M. and Ito, R.: Applying NLP techniques to malware detection in a
practical environment, Int. J.Inf. Sec., Vol. 21, No. 2, pp. 279–291 (2022). ○ ○

This study ○ ○ ○

Bag-of-Words (BoW)
 A model that counts the number of occurrences of a word in a sentence and

represents it as a vector
 This model does not take word order into account

8

e.g.
Sentence 1：I have a pen
Sentence 2：You have an apple

Create unique word dictionaries based on all documents
Corpus = [‘I’ , ’have’ , ’a’ , ’pen’ , ’You’ , ’an’ , ’apple’]

Convert sentences into vectors according to word dictionaries and word frequencies
Sentence 1 ：I have a pen
Sentence 2 ：I have an apple

[1, 1, 1, 1, 0, 0, 0]
[0, 1, 0, 0, 1, 1, 1]

3. Related Technique (1 / 3)

3. Related Technique (2 / 3)
Words are converted to corresponding IDs
 A model that assign IDs to dictionaries as they are created and represent vectors
 This model takes word order into account

9

e.g.
Sentence 1：I have a pen
Sentence 2：You have an apple

Create unique word dictionaries based on all documents
Corpus = [‘1:I’ , ’2:have’ , ’3:a’ , ’4:pen’ , ’5:You’ , ’6:an’ , ’7:apple’]

Convert sentences into a vector by assigning IDs according to a word dictionary
Sentence 1 ：I have a pen
Sentence 2 ：I have an apple

[1, 2, 3, 4]
[1, 2, 6, 7]

3. Related Technique (3 / 3)
Self-attention mechanism

10

 Self-attention mechanism is a method of
focusing on and expressing the element-by-
element relationships of input data

 There are three elements: Query, Key, Value

 Query is the information you want to search
for in the input data

 Key is used to calculate the relevance of the
Query to the object to be searched

 Value is used to output the appropriate Value
based on Key

Matmul

Softmax

Matmul

Output

Input

Query Key Value

4. Experimental Method (1 / 3) 11

1. Extract ASCII strings

2. Adjust sequence length

4. Creating feature vectors

5. Training with each classifier

6. Extract ASCII strings

7. Adjust sequence length

8. Creating feature vectors

9. Use of each classifier

Known executable files
(benign, malicious)

Unknown executable files
(benign, malicious)

3. Creating a corpus

10. Extraction of the importance of each
word in the self-attention mechanism
(Only LSTM with self-attention
mechanism is executed)

Determined by preliminary

experiments

4. Experimental Method (2 / 3)
How to create a corpus

1. Extract ASCII strings of n (n≥1) or more consecutive characters from the training data

2. Extract words in order of frequency of occurrence

We experimented with five different corpuses, this time to find words whose meanings we
could understand.

12

e.g.：Case for creating a corpus of words with 2 or more consecutive ASCII
strings and the top 3 words

[‘This:1’, ‘program:4’, ‘cannot:2’, ‘@:5’, ‘DOS:3’] [‘Word:Frequency’]

[‘This:1’, ‘program:4’, ‘cannot:2’, ‘DOS:3’]

[‘program:4’, ‘DOS:3’, ‘cannot:2’]

Extract words with 2 or more consecutive ASCII strings

Top 3 words in order of frequency of occurrence

4. Experimental Method (3 / 3) 13

SVM

Classifier

LSTM with self-
attention mechanism

1 or more consecutive
ASCII string

How to create a corpus

2 or more consecutive
ASCII string

3 or more consecutive
ASCII string

4 or more consecutive
ASCII string

5 or more consecutive
ASCII string

Case where words
are converted to

corresponding IDs

Case with BoW

How to create feature
vectors

5. Experiment (1 / 8)
About datasets
 FFRI Datasets are datasets of surface analysis
 Distributed in json format
 Cleanware of FFRI Datasets ware collected by AV-TEST
 Malware of FFRI Datasets ware collected by FFRI

Security, Inc.
Use the strings of FFRI Dataset 2020 to 2022

14

FFRI Dataset

Element Summary

id SHA-256 hash value
of samples

file_size File size

hashes Various hash values

peid Output of pypeid

lief Output of lief

trid Output of trid

strings Output of strings

die Output of die

manalyze_plugin
_packer

Output of manalyze
plugin packer

label label

date Date collected

version Version of a dataset
Contents displayed in a binary editor

5. Experiment (2 / 8)
About datasets

15

Dataset Classification Files Unique words

FFRI Dataset 2020
Cleanware 75,000 967,075,087
Malware 75,000 162,245,592

FFRI Dataset 2021
Cleanware 75,000 1,001,705,100
Malware 75,000 15,504,0251

FFRI Dataset 2022
Cleanware 75,000 712,981,765
Malware 75,000 298,828,720

5. Experiment (3 / 8)
Results of preliminary experiments
Preliminary experiments were conducted to optimize the parameters of vocab size
and sequence length for machine learning.
The FFRI Dataset 2020 was used for this experiment.

16

How to create feature
vectors Vocab size Sequence length

Case with BoW 500

Case where words are
converted to

corresponding IDs
100,000 120

5. Experiment (4 / 8)
Combining training and test data in validation experiments

Based on FFRI Dataset 2020, detect FFRI Dataset 2021 and FFRI Dataset 2022
(Time series analysis)

17

Training data Test data

FFRI Dataset 2020
FFRI Dataset 2021

FFRI Dataset 2022

5. Experiment (5 / 8)
Recall results

18

Case with BoW
Case where words
are converted to

corresponding IDs

Minumum length of the corpus Minumum length of the corpus

5. Experiment (6 / 8)
F-measure results

19

Case with BoW
Case where words
are converted to

corresponding IDs

Minumum length of the corpus Minumum length of the corpus

5. Experiment (7 / 8)

FFRI Dataset 2021
Rank TN FP TP FN

1 run run in in
2 program program run run
3 be be data up
4 in in rd rs
5 dos dos text data
6 text must rs text
7 rd under rich rd
8 reloc win32 id id
9 data text reloc rich
10 rs rd this dll

20

FFRI Dataset 2021
Rank TN FP TP FN
11 must data tls this
12 bs up win32 win32
13 under rs under under
14 win32 rich boolean tls
15 id dll FALSE sv
16 tls as it bs
17 xd wi TRUE ad
18 strings 54 integer as
19 rich yr sv reloc
20 it reloc up 4o

Aggregated results for words of high importance
(Corpus created with strings of 2 or more consecutive ASCII strings that had the highest Recall value was used)
 Words appearing in all of TN, FP, TP and FN are colored blue
 Words common to three of the four are colored green.

5. Experiment (8 / 8)

FFRI Dataset 2022
Rank TN FP TP FN

1 in in cannot cannot
2 dos dos run run
3 cannot cannot rich rich
4 rd js rd up
5 data text data main
6 bs data rs emu
7 reloc exe text g7
8 rs rd be bs
9 text z9 under fv
10 tls rs up dl

21

FFRI Dataset 2022
Rank TN FP TP FN
11 id dll sn petite
12 be go id ein
13 run ai gg sv
14 win32 kt reloc rs
15 core mp ad dll
16 pd zo as 5t
17 303 cm ed text
18 hh ds tls hd
19 uu qb bs uw
20 sv ni le code

Aggregated results for words of high importance
(Corpus created with strings of 2 or more consecutive ASCII strings that had the highest Recall value was used)
 Words appearing in all of TN, FP, TP and FN are colored blue
 Words common to three of the four are colored green.

Need to consider consecutive ASCII string in corpus creation
 In both the BoW case and the case where IDs are assigned corresponding to

words, the recall and f-measure values are improved by considering consecutive
ASCII strings when creating a corpus

 However, a long ASCII string is not always better

There are certain benefits to considering consecutive ASCII strings
when creating a corpus

6. Discussion (1 / 2)
22

Effect of self-attention mechanism on ASCII strings
 Of the top 20 words in each of TN, FP, TP, and FN, about 60% of the words in

FFRI Dataset2021 and about 30% in FFRI Dataset2022 had 3 or more words in
common with each of TN, FP, TP, and FN

 Focusing on the top words in TN, FP, TP, and FN, about 50% of the words in the
test data are common to both FFRI Dataset2021 and FFRI Dataset2022

Potential to improve detection rate by creating a corpus
of only words of high importance

e.g.
Create a corpus of words common only to benign files and words common only to

malignant files

6. Discussion (2 / 2) 23

Conclusion
1. A new model with a self-attention mechanism was used to detect malware using

ASCII strings. The maximum F-measure was 0.904
2. We confirmed that removing non-consecutive ASCII strings from the corpus has a

certain effect.
3. The influence of the self-attention mechanism on readable strings was clarified,

and it was confirmed that there are words of high importance that contribute to
detection.

Future Plans
1. How does accuracy change when combined with features other than readable

strings
2. Check the effect on accuracy of using other datasets
3. Check the effect on accuracy of creating a corpus with words of high importance

7. Conclusion (1 / 1) 24

	Detection of malware using�self-attention mechanism and strings
	Contents
	1. Background (1 / 4)
	1. Background (2 / 4)
	1. Background (3 / 4)
	1. Background (4 / 4)
	2. Related Work (1 / 1)
	3. Related Technique (1 / 3)
	3. Related Technique (2 / 3)
	3. Related Technique (3 / 3)
	4. Experimental Method (1 / 3)
	4. Experimental Method (2 / 3)
	4. Experimental Method (3 / 3)
	5. Experiment (1 / 8)
	5. Experiment (2 / 8)
	5. Experiment (3 / 8)
	5. Experiment (4 / 8)
	5. Experiment (5 / 8)
	5. Experiment (6 / 8)
	5. Experiment (7 / 8)
	5. Experiment (8 / 8)
	6. Discussion (1 / 2)
	6. Discussion (2 / 2)
	7. Conclusion (1 / 1)

